Carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in central nervous systems-regenerative medicine: effects on neuron/glial cell viability and internalization efficiency.

نویسندگان

  • António J Salgado
  • Joaquim M Oliveira
  • Rogério P Pirraco
  • Vitor H Pereira
  • Joana S Fraga
  • Alexandra P Marques
  • Nuno M Neves
  • João F Mano
  • Rui L Reis
  • Nuno Sousa
چکیده

The applicability of CMCht/PAMAM dendrimer nanoparticles for CNS applications was investigated. AFM and TEM observations revealed that the nanoparticles possessed a nanosphere-like shape with a size from 22.0 to 30.7 nm. The nanoparticles could be bound to fluorescent-probe FITC for tracing purposes. Post-natal hippocampal neurons and cortical glial cells were both able to internalize the FITC-labeled CMCht/PAMAM dendrimer nanoparticles with high efficiency. The percentage of positive cells internalizing the nanoparticles varied, reaching a peak after 48 h of incubation. Further experiments for periods up to 7 d revealed that the periodical addition of FITC-labelled CMCht/PAMAM dendrimer nanoparticles was needed to maintain the overall percentage of cells internalizing them. Finally, it was also observed that cell viability was not significantly affected by the incubation of dendrimer nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Engineered Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles for Intracellular Targeting

Novel highly branched biodegradable macromolecular systems have been developed by grafting carboxymethylchitosan (CMCht) onto low generation poly(amidoamine) (PAMAM) dendrimers. Such structures organize into sphere-like nanoparticles that are proposed to be used as carriers to deliver bioactive molecules aimed at controlling the behavior of stem cells, namely their proliferation and differentia...

متن کامل

Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation.

Recently, our group has proposed a combinatorial strategy in tissue engineering principles employing carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles (CMCht/PAMAM) towards the intracellular release and regimented supply of dexamethasone (Dex) aimed at controlling stem cell osteogenic differentiation in the absence of typical osteogenic inducers, in vivo. In this work, we have inve...

متن کامل

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells.

Dendrimer-based nanotechnology significantly advances the area of targeted cancer imaging and therapy. Herein, we compared the difference of surface acetylated fluorescein isocyanate (FI) and folic acid (FA) modified generation 5 (G5) poly(amidoamine) dendrimers (G5.NHAc-FI-FA), and dendrimer-entrapped gold nanoparticles with similar modifications ([(Au(0))(51.2)-G5.NHAc-FI-FA]) in terms of the...

متن کامل

Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio

To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 2010